Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1286822, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655080

RESUMO

Winged helix (wH) domains, also termed winged helix-turn-helix (wHTH) domains, are widespread in all kingdoms of life and have diverse roles. In the context of DNA binding and DNA modification sensing, some eukaryotic wH domains are known as sensors of non-methylated CpG. In contrast, the prokaryotic wH domains in DpnI and HhiV4I act as sensors of adenine methylation in the 6mApT (N6-methyladenine, 6mA, or N6mA) context. DNA-binding modes and interactions with the probed dinucleotide are vastly different in the two cases. Here, we show that the role of the wH domain as a sensor of adenine methylation is widespread in prokaryotes. We present previously uncharacterized examples of PD-(D/E)XK-wH (FcyTI, Psp4BI), PUA-wH-HNH (HtuIII), wH-GIY-YIG (Ahi29725I, Apa233I), and PLD-wH (Aba4572I, CbaI) fusion endonucleases that sense adenine methylation in the Dam+ Gm6ATC sequence contexts. Representatives of the wH domain endonuclease fusion families with the exception of the PLD-wH family could be purified, and an in vitro preference for adenine methylation in the Dam context could be demonstrated. Like most other modification-dependent restriction endonucleases (MDREs, also called type IV restriction systems), the new fusion endonucleases except those in the PD-(D/E)XK-wH family cleave close to but outside the recognition sequence. Taken together, our data illustrate the widespread combinatorial use of prokaryotic wH domains as adenine methylation readers. Other potential 6mA sensors in modified DNA are also discussed.

2.
Methods Mol Biol ; 2611: 39-52, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36807062

RESUMO

Genome-wide accessible chromatin sequencing and identification has enabled deciphering the epigenetic information encoded in chromatin, revealing accessible promoters, enhancers, nucleosome positioning, transcription factor occupancy, and other chromosomal protein binding. The starting biological materials are often fixed using formaldehyde crosslinking. Here, we describe accessible chromatin library preparation from low numbers of formaldehyde-crosslinked cells using a modified nick translation method, where a nicking enzyme nicks one strand of DNA and DNA polymerase incorporates biotin-conjugated dATP, dCTP, and methyl-dCTP. Once the DNA is labeled, it can be isolated for NGS library preparation. We termed this method as universal NicE-seq (nicking enzyme-assisted sequencing). We also demonstrate a single tube method that enables direct NGS library preparation from low cell numbers without DNA purification. Furthermore, we demonstrated universal NicE-seq on FFPE tissue section sample.


Assuntos
Cromatina , DNA , DNA/genética , Nucleossomos , Mapeamento Cromossômico/métodos , Análise de Sequência de DNA/métodos , Formaldeído , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
PLoS Genet ; 18(9): e1010389, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121836

RESUMO

Phosphorothioation (PT), in which a non-bridging oxygen is replaced by a sulfur, is one of the rare modifications discovered in bacteria and archaea that occurs on the sugar-phosphate backbone as opposed to the nucleobase moiety of DNA. While PT modification is widespread in the prokaryotic kingdom, how PT modifications are distributed in the genomes and their exact roles in the cell remain to be defined. In this study, we developed a simple and convenient technique called EcoWI-seq based on a modification-dependent restriction endonuclease to identify genomic positions of PT modifications. EcoWI-seq shows similar performance than other PT modification detection techniques and additionally, is easily scalable while requiring little starting material. As a proof of principle, we applied EcoWI-seq to map the PT modifications at base resolution in the genomes of both the Salmonella enterica cerro 87 and E. coli expressing the dnd+ gene cluster. Specifically, we address whether the partial establishment of modified PT positions is a stochastic or deterministic process. EcoWI-seq reveals a systematic usage of the same subset of target sites in clones for which the PT modification has been independently established.


Assuntos
Escherichia coli , Salmonella enterica , DNA/genética , Enzimas de Restrição do DNA , DNA Bacteriano/genética , Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala , Oxigênio , Fosfatos , Salmonella enterica/genética , Açúcares , Enxofre
4.
Front Microbiol ; 13: 888435, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663886

RESUMO

It is stated that BsaXI is a Type IIB restriction endonuclease (REase) that cleaves both sides of its recognition sequence 5'↓N9 AC N5 CTCC N10↓ 3' (complement strand 5' ↓N7 GGAG N5 GT N12↓ 3'), creating 3-base 3' overhangs. Here we report the cloning and expression of bsaXIS and bsaXIRM genes in Escherichia coli. The BsaXI activity was successfully reconstituted by mixing the BsaXI RM fusion subunit with the BsaXI S subunit and the enzyme complex further purified by chromatography over 6 columns. As expected, the S subunit consisted of two subdomains encoding TRD1-CR1 [target recognition domain (TRD), conserved region (CR)] for 5' AC 3', and TRD2-CR2 presumably specifying 5' CTCC 3'. TRD1-CR1 (TRD2-CR2 deletion) or duplication of TRD1 (TRD1-CR1-TRD1-CR2) both generated a new specificity 5' AC N5 GT 3' when the S variants were complexed with the RM subunits. The circular permutation of TRD1 and TRD2, i.e., the relocation of TRD2-CR2 to the N-terminus and TRD1-CR1 to the C-terminus generated the same specificity with the RM subunits, although some wobble cleavage was detected. The TRD2 domain in the BsaXI S subunit can be substituted by a close homolog (∼59% sequence identity) and generated the same specificity. However, TRD2-CR2 domain alone failed to express in E. coli, but CR1-TRD2-CR2 protein could be expressed and purified which showed partial nicking activity with the RM subunits. This work demonstrated that like Type I restriction systems, the S subunit of a Type IIB system could also be manipulated to create new specificities. The genome mining of BsaXI TRD2 homologs in GenBank found more than 36 orphan TRD2 homologs, implying that quite a few orphan TRD2s are present in microbial genomes that may be potentially paired with other TRDs to create new restriction specificities.

5.
Front Microbiol ; 12: 689929, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276622

RESUMO

BisI is a sequence-specific and 5-methylcytosine (m5C)-dependent restriction endonuclease (REase), that cleaves the modified DNA sequence Gm5CNGC (G indicates that the cytosine opposite to G is modified). We expressed and purified a number of BisI homologs from sequenced bacterial genomes and used Illumina sequencing to determine the Pam7902I (Esp638I-like) cleavage sites in phage Xp12 DNA. One BisI homolog KpnW2I is EcoBLMcrX-like, cleaving GCNGC/RCNGY/RCNRC sites with m5C. We also cloned and expressed three BisI homologs from metagenome sequences derived from thermophilic sources. One enzyme EsaTMI is active at 37 to 65°C. EsaHLI cleaves GCNGC sites with three to four m5C and is active up to 50°C. In addition, we determined the number and position of m5C in BisI sites for efficient cleavage. BisI cleavage efficiency of GCNGC site is as following: Gm5CNGC (two internal m5C) > Gm5CNGC (one internal m5C) > GCNGm5C (one external m5C) > > GCNGC (unmodified). Three or four m5C in GCNGC site also supports BisI cleavage although partial inhibition was observed on duplex oligos with four m5C. BisI can be used to partially cleave a desired GCNGC site targeted with a complementary oligonucleotide (hemi-methylated). The m5C-dependent BisI variants will be useful for epigenetic research.

6.
Front Microbiol ; 12: 660149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177838

RESUMO

The SARS-CoV-2 viral genome contains a positive-strand single-stranded RNA of ∼30 kb. Human ACE2 protein is the receptor for SARS-CoV-2 virus attachment and infection. We propose to use ribonucleases (RNases) as antiviral agents to destroy the viral genome in vitro. In the virions, the RNA is protected by viral capsid proteins, membrane proteins, and nucleocapsid proteins. To utilize RNases as antiviral strategy, we set out to construct RNase fusion with human ACE2 receptor N-terminal domain (ACE2NTD). We expressed six proteins in E. coli cells: (1) MBP-ACE2NTD, (2) ACE2NTD-GFP, (3) RNase I (6×His), (4) RNase III (6×His), (5) RNase I-ACE2NTD (6×His), and (6) human RNase A-ACE2NTD (6×His). We evaluated fusion expression in different E. coli strains, partially purified MBP-ACE2NTD protein from the soluble fraction of bacterial cell lysate, and refolded MBP-ACE2NTD protein from inclusion body. The engineered RNase I-ACE2NTD (6×His) and hRNase A-ACE2NTD (6×His) fusions are active in cleaving SARS-CoV-2 RNA fragment in vitro. The recombinant RNase I (6×His) and RNase III (6×His) are active in cleaving RNA and dsRNA in test tube. This study provides a proof-of-concept for construction of fusion protein between human receptor and nuclease that may be used to degrade viral nucleic acids.

7.
Nucleic Acids Res ; 49(4): 2161-2178, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33533920

RESUMO

Acquisition of foreign DNA by Staphylococcus aureus, including vancomycin resistance genes, is thwarted by the ATP-dependent endonuclease SauUSI. Deciphering the mechanism of action of SauUSI could unravel the reason how it singularly plays a major role in preventing horizontal gene transfer (HGT) in S. aureus. Here, we report a detailed biochemical and structural characterization of SauUSI, which reveals that in the presence of ATP, the enzyme can cleave DNA having a single or multiple target site/s. Remarkably, in the case of multiple target sites, the entire region of DNA flanked by two target sites is shred into smaller fragments by SauUSI. Crystal structure of SauUSI reveals a stable dimer held together by the nuclease domains, which are spatially arranged to hydrolyze the phosphodiester bonds of both strands of the duplex. Thus, the architecture of the dimeric SauUSI facilitates cleavage of either single-site or multi-site DNA. The structure also provides insights into the molecular basis of target recognition by SauUSI. We show that target recognition activates ATP hydrolysis by the helicase-like ATPase domain, which powers active directional movement (translocation) of SauUSI along the DNA. We propose that a pile-up of multiple translocating SauUSI molecules against a stationary SauUSI bound to a target site catalyzes random double-stranded breaks causing shredding of the DNA between two target sites. The extensive and irreparable damage of the foreign DNA by shredding makes SauUSI a potent barrier against HGT.


Assuntos
Clivagem do DNA , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Staphylococcus aureus/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , DNA/química , Farmacorresistência Bacteriana , Transferência Genética Horizontal , Modelos Moleculares , Multimerização Proteica , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética
8.
Nucleic Acids Res ; 49(3): 1708-1723, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33450012

RESUMO

Many modification-dependent restriction endonucleases (MDREs) are fusions of a PUA superfamily modification sensor domain and a nuclease catalytic domain. EVE domains belong to the PUA superfamily, and are present in MDREs in combination with HNH nuclease domains. Here, we present a biochemical characterization of the EVE-HNH endonuclease VcaM4I and crystal structures of the protein alone, with EVE domain bound to either 5mC modified dsDNA or to 5mC/5hmC containing ssDNA. The EVE domain is moderately specific for 5mC/5hmC containing DNA according to EMSA experiments. It flips the modified nucleotide, to accommodate it in a hydrophobic pocket of the enzyme, primarily formed by P24, W82 and Y130 residues. In the crystallized conformation, the EVE domain and linker helix between the two domains block DNA binding to the catalytic domain. Removal of the EVE domain and inter-domain linker, but not of the EVE domain alone converts VcaM4I into a non-specific toxic nuclease. The role of the key residues in the EVE and HNH domains of VcaM4I is confirmed by digestion and restriction assays with the enzyme variants that differ from the wild-type by changes to the base binding pocket or to the catalytic residues.


Assuntos
Enzimas de Restrição do DNA/química , DNA/química , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/química , Domínio Catalítico , Cristalografia por Raios X , DNA de Cadeia Simples/química , Modelos Moleculares , Motivos de Nucleotídeos , Domínios Proteicos , Espalhamento a Baixo Ângulo , Vibrio/enzimologia , Difração de Raios X
9.
Front Microbiol ; 12: 787073, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35178039

RESUMO

Strand-specific DNA nicking endonucleases (NEases) typically nick 3-7 bp sites. Our goal is to engineer infrequent NEase with a >8 bp recognition sequence. A BamHI catalytic-deficient mutant D94N/E113K was constructed, purified, and shown to bind and protect the GGATCC site from BamHI restriction. The mutant was fused to a 76-amino acid (aa) DNA nicking domain of phage Gamma HNH (gHNH) NEase. The chimeric enzyme was purified, and it was shown to nick downstream of a composite site 5' GGATCC-N(4-6)-AC↑CGR 3' (R, A, or G) or to nick both sides of BamHI site at the composite site 5' CCG↓GT-N5-GGATCC-N5-AC↑CGG 3' (the down arrow ↓ indicates the strand shown is nicked; the up arrow↑indicates the bottom strand is nicked). Due to the attenuated activity of the small nicking domain, the fusion nickase is active in the presence of Mn2+ or Ni2+, and it has low activity in Mg2+ buffer. This work provided a proof-of-concept experiment in which a chimeric NEase could be engineered utilizing the binding specificity of a Type II restriction endonucleases (REases) in fusion with a nicking domain to generate infrequent nickase, which bridges the gap between natural REases and homing endonucleases. The engineered chimeric NEase provided a framework for further optimization in molecular diagnostic applications.

10.
Front Microbiol ; 11: 604618, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193286

RESUMO

To counteract host-encoded restriction systems, bacteriophages (phages) incorporate modified bases in their genomes. For example, phages carry in their genomes modified pyrimidines such as 5-hydroxymethyl-cytosine (5hmC) in T4gt deficient in α- and ß-glycosyltransferases, glucosylated-5-hydroxymethylcytosine (5gmC) in T4, 5-methylcytosine (5mC) in Xp12, and 5-hydroxymethyldeoxyuridine (5hmdU) in SP8. In this work we sequenced phage Xp12 and SP8 genomes and examined Type II restriction of T4gt, T4, Xp12, and SP8 phage DNAs. T4gt, T4, and Xp12 genomes showed resistance to 81.9% (186 out of 227 enzymes tested), 94.3% (214 out of 227 enzymes tested), and 89.9% (196 out of 218 enzymes tested), respectively, commercially available Type II restriction endonucleases (REases). The SP8 genome, however, was resistant to only ∼8.3% of these enzymes (17 out of 204 enzymes tested). SP8 DNA could be further modified by adenine DNA methyltransferases (MTases) such as M.Dam and M.EcoGII as well as a number of cytosine DNA MTases, such as CpG methylase. The 5hmdU base in SP8 DNA was phosphorylated by treatment with a 5hmdU DNA kinase to achieve ∼20% phosphorylated 5hmdU, resulting resistance or partially resistant to more Type II restriction. This work provides a convenient reference for molecular biologists working with modified pyrimidines and using REases. The genomic sequences of phage Xp12 and SP8 lay the foundation for further studies on genetic pathways for 5mC and 5hmdU DNA base modifications and for comparative phage genomics.

11.
Front Microbiol ; 11: 1960, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013736

RESUMO

Modification dependent restriction endonucleases (MDREs) restrict modified DNA, typically with limited sequence specificity (∼2-4 bp). Here, we focus on MDREs that have an SRA and/or SBD (sulfur binding domain) fused to an HNH endonuclease domain, cleaving cytosine modified or phosphorothioated (PT) DNA. We independently characterized the SBD-SRA-HNH endonuclease ScoMcrA, which preferentially cleaves 5hmC modified DNA. We report five SBD-HNH endonucleases, all recognizing GpsAAC/GpsTTC sequence and cleaving outside with a single nucleotide 3' stagger: EcoWI (N7/N6), Ksp11411I (N5/N4), Bsp305I (N6/N4-5), Mae9806I [N(8-10)/N(8-9)], and Sau43800I [N(8-9)/N(7-8)]. EcoWI and Bsp305I are more specific for PT modified DNA in Mg2+ buffer, and promiscuous with Mn2+. Ksp11411I is more PT specific with Ni2+. EcoWI and Ksp11411I cleave fully- and hemi-PT modified oligos, while Bsp305I cleaves only fully modified ones. EcoWI forms a dimer in solution and cleaves more efficiently in the presence of two modified sites. In addition, we demonstrate that EcoWI PT-dependent activity has biological function: EcoWI expressing cells restrict dnd+ GpsAAC modified plasmid strongly, and GpsGCC DNA weakly. This work establishes a framework for biotechnology applications of PT-dependent restriction endonucleases (PTDRs).

12.
Clin Epigenetics ; 12(1): 143, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32962734

RESUMO

Accessible chromatin plays a central role in gene expression and chromatin architecture. Current accessible chromatin approaches depend on limited digestion/cutting and pasting adaptors at the accessible DNA, thus requiring additional materials and time for optimization. Universal NicE-seq (UniNicE-seq) is an improved accessible chromatin profiling method that negates the optimization step and is suited to a variety of mammalian cells and tissues. Addition of 5-methyldeoxycytidine triphosphate during accessible chromatin labeling and an on-bead library making step substantially improved the signal to noise ratio while protecting the accessible regions from repeated nicking in cell lines, mouse T cells, mouse kidney, and human frozen tissue sections. We also demonstrate one tube UniNicE-seq for the FFPE tissue section for direct NGS library preparation without sonication and DNA purification steps. These refinements allowed reliable mapping of accessible chromatin for high-resolution genomic feature studies.


Assuntos
Cromatina/efeitos dos fármacos , Fixadores/farmacologia , Formaldeído/farmacologia , Inclusão em Parafina/métodos , Fixação de Tecidos/métodos , Animais , Cromatina/genética , Biologia Computacional/métodos , Nucleotídeos de Desoxicitosina/farmacologia , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Células HCT116/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Rim/metabolismo , Camundongos , Razão Sinal-Ruído , Coloração e Rotulagem/métodos , Linfócitos T/metabolismo
13.
Nucleic Acids Res ; 47(18): 9761-9776, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31504772

RESUMO

Modification dependent restriction endonucleases (MDREs) often have separate catalytic and modification dependent domains. We systematically looked for previously uncharacterized fusion proteins featuring a PUA or DUF3427 domain and HNH or PD-(D/E)XK catalytic domain. The enzymes were clustered by similarity of their putative modification sensing domains into several groups. The TspA15I (VcaM4I, CmeDI), ScoA3IV (MsiJI, VcaCI) and YenY4I groups, all featuring a PUA superfamily domain, preferentially cleaved DNA containing 5-methylcytosine or 5-hydroxymethylcytosine. ScoA3V, also featuring a PUA superfamily domain, but of a different clade, exhibited 6-methyladenine stimulated nicking activity. With few exceptions, ORFs for PUA-superfamily domain containing endonucleases were not close to DNA methyltransferase ORFs, strongly supporting modification dependent activity of the endonucleases. DUF3427 domain containing fusion proteins had very little or no endonuclease activity, despite the presence of a putative PD-(D/E)XK catalytic domain. However, their expression potently restricted phage T4gt in Escherichia coli cells. In contrast to the ORFs for PUA domain containing endonucleases, the ORFs for DUF3427 fusion proteins were frequently found in defense islands, often also featuring DNA methyltransferases.


Assuntos
Metilases de Modificação do DNA/genética , Enzimas de Restrição do DNA/genética , Escherichia coli/enzimologia , Regulação Enzimológica da Expressão Gênica/genética , Sequência de Aminoácidos , Domínio Catalítico/genética , Clivagem do DNA , Metilases de Modificação do DNA/química , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/classificação , Escherichia coli/genética , Modelos Moleculares , Estrutura Terciária de Proteína/genética , Alinhamento de Sequência
14.
Front Microbiol ; 10: 584, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984133

RESUMO

To counteract bacterial defense systems, bacteriophages (phages) make extensive base modifications (substitutions) to block endonuclease restriction. Here we evaluated Type II restriction of three thymidine (T or 5-methyldeoxyuridine, 5mdU) modified phage genomes: Pseudomonas phage M6 with 5-(2-aminoethyl)deoxyuridine (5-NedU), Salmonella phage ViI (Vi1) with 5-(2-aminoethoxy)methyldeoxyuridine (5-NeOmdU) and Delftia phage phi W-14 (a.k.a. ΦW-14) with α-putrescinylthymidine (putT). Among >200 commercially available restriction endonucleases (REases) tested, phage M6, ViI, and phi W-14 genomic DNAs (gDNA) show resistance against 48.4, 71.0, and 68.8% of Type II restrictions, respectively. Inspection of the resistant sites indicates the presence of conserved dinucleotide TG or TC (TS, S=C, or G), implicating the specificity of TS sequence as the target that is converted to modified base in the genomes. We also tested a number of DNA methyltransferases (MTases) on these phage DNAs and found some MTases can fully or partially modify the DNA to confer more resistance to cleavage by REases. Phage M6 restriction fragments can be efficiently ligated by T4 DNA ligase. Phi W-14 restriction fragments show apparent reduced rate in E. coli exonuclease III degradation. This work extends previous studies that hypermodified T derived from 5hmdU provides additional resistance to host-encoded restrictions, in parallel to modified cytosines, guanine, and adenine in phage genomes. The results reported here provide a general guidance to use REases to map and clone phage DNA with hypermodified thymidine.

15.
Nucleic Acids Res ; 46(19): 10489-10503, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30202937

RESUMO

TagI belongs to the recently characterized SRA-HNH family of modification-dependent restriction endonucleases (REases) that also includes ScoA3IV (Sco5333) and TbiR51I (Tbis1). Here, we present a crystal structure of dimeric TagI, which exhibits a DNA binding site formed jointly by the nuclease domains, and separate binding sites for modified DNA bases in the two protomers. The nuclease domains have characteristic features of HNH/ßßα-Me REases, and catalyze nicks or double strand breaks, with preference for /RY and RYN/RY sites, respectively. The SRA domains have the canonical fold. Their pockets for the flipped bases are spacious enough to accommodate 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC), but not glucosyl-5-hydroxymethylcytosine (g5hmC). Such preference is in agreement with the biochemical determination of the TagI modification dependence and the results of phage restriction assays. The ability of TagI to digest plasmids methylated by Dcm (C5mCWGG), M.Fnu4HI (G5mCNGC) or M.HpyCH4IV (A5mCGT) suggests that the SRA domains of the enzyme are tolerant to different sequence contexts of the modified base.


Assuntos
5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Enzimas de Restrição do DNA/metabolismo , 5-Metilcitosina/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação/genética , Ligação Competitiva , DNA/química , DNA/genética , DNA/metabolismo , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos
16.
Nucleic Acids Res ; 46(18): 9829-9841, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30107581

RESUMO

Escherichia coli McrA (EcoKMcrA) acts as a methylcytosine and hydroxymethylcytosine dependent restriction endonuclease. We present a biochemical characterization of EcoKMcrA that includes the first demonstration of its endonuclease activity, small angle X-ray scattering (SAXS) data, and a crystal structure of the enzyme in the absence of DNA. Our data indicate that EcoKMcrA dimerizes via the anticipated C-terminal HNH domains, which together form a single DNA binding site. The N-terminal domains are not homologous to SRA domains, do not interact with each other, and have separate DNA binding sites. Electrophoretic mobility shift assay (EMSA) and footprinting experiments suggest that the N-terminal domains can sense the presence and sequence context of modified cytosines. Pyrrolocytosine fluorescence data indicate no base flipping. In vitro, EcoKMcrA DNA endonuclease activity requires Mn2+ ions, is not strictly methyl dependent, and is not observed when active site variants of the enzyme are used. In cells, EcoKMcrA specifically restricts DNA that is modified in the correct sequence context. This activity is impaired by mutations of the nuclease active site, unless the enzyme is highly overexpressed.


Assuntos
Enzimas de Restrição do DNA/química , Proteínas de Ligação a DNA/química , Estrutura Terciária de Proteína , Sequência de Aminoácidos/genética , Sítios de Ligação/genética , Domínio Catalítico/genética , Citosina/química , Enzimas de Restrição do DNA/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/química , Escherichia coli/genética , Regulação Enzimológica da Expressão Gênica , Ligação Proteica , Espalhamento a Baixo Ângulo
17.
Front Microbiol ; 8: 2146, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29167659

RESUMO

It has become apparent that gut microbiota is closely associated with cardiometabolic diseases (CMDs), and alteration in microbiome compositions is also linked to the host environment. Next generation sequencing (NGS) has facilitated in-depth studies on the effects of herbal medicine and functional food on gut microbiota. Both herbal medicine and functional food contain fiber, polyphenols and polysaccharides, exerting prebiotics-like activities in the prevention and treatment of CMDs. The administrations of herbal medicine and functional food lead to increased the abundance of phylum Bacteroidetes, and genus Akkermansia, Bifidobacteria, Lactobacillus, Bacteroides and Prevotella, while reducing phylum Firmicutes and Firmicutes/Bacteroidetes ratio in gut. Both herbal medicine and functional food interact with gut microbiome and alter the microbial metabolites including short-chain fatty acids (SCFAs), bile acids (BAs) and lipopolysaccharides (LPS), which are now correlated with metabolic diseases such as type 2 diabetes (T2D), obesity and non-alcoholic fatty liver disease (NAFLD). In addition, trimethylamine (TMA)-N-oxide (TMAO) is recently linked to atherosclerosis (AS) and cardiovascular disease (CVD) risks. Moreover, gut-organs axes may serve as the potential strategy for treating CMDs with the intervention of herbal medicine and functional food. In summary, a balance between herbal medicine and functional food rich in fiber, polyphenols and polysaccharides plays a vital role in modulating gut microbiota (phylum Bacteroidetes, Firmicutes and Firmicutes/Bacteroidetes ratio, and genus Akkermansia, Bifidobacteria, Lactobacillus, Bacteroides and Prevotella) through SCFAs, BAs, LPS and TMAO signaling regarding CMDs. Targeting gut-organs axes may serve as a new therapeutic strategy for CMDs by herbal medicine and functional food in the future. This review aims to summarize the balance between herbal medicine and functional food utilized for the prevention and treatment of CMDs through modulating gut microbiota.

18.
Cell Rep ; 21(2): 482-494, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29020633

RESUMO

Enzymatic oxidation of 5-methylcytosine (5mC) in DNA by the Tet dioxygenases reprograms genome function in embryogenesis and postnatal development. Tet-oxidized derivatives of 5mC such as 5-hydroxymethylcytosine (5hmC) act as transient intermediates in DNA demethylation or persist as durable marks, yet how these alternative fates are specified at individual CpGs is not understood. Here, we report that the SOS response-associated peptidase (SRAP) domain protein Srap1, the mammalian ortholog of an ancient protein superfamily associated with DNA damage response operons in bacteria, binds to Tet-oxidized forms of 5mC in DNA and catalyzes turnover of these bases to unmodified cytosine by an autopeptidase-coupled nuclease. Biallelic inactivation of murine Srap1 causes embryonic sublethality associated with widespread accumulation of ectopic 5hmC. These findings establish a function for a class of DNA base modification-selective nucleases and position Srap1 as a determinant of 5mC demethylation trajectories during mammalian embryonic development.


Assuntos
5-Metilcitosina/análogos & derivados , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , 5-Metilcitosina/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica
19.
Sci Rep ; 7(1): 8348, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827753

RESUMO

E. coli phage 9 g contains the modified base deoxyarchaeosine (dG+) in its genome. The phage encodes its own primase, DNA ligase, DNA polymerase, and enzymes necessary to synthesize and incorporate dG+. Here we report phage 9 g DNA sensitivity to >200 Type II restriction endonucleases (REases). Among the REases tested approximately 29% generated complete or partial digestions, while the remaining 71% displayed resistance to restriction. Phage 9 g restriction fragments can be degraded by DNA exonucleases or ligated by T3 and T4 DNA ligases. In addition, we examined a number of cytosine and adenine methyltransferases to generate double base modifications. M.AluI, M.CviPI, M.HhaI, and M.EcoGII were able to introduce 5mC or N6mA into 9 g DNA as confirmed by partial resistance to restriction and by liquid chromatography-mass spectrometry. A number of wild-type E. coli bacteria restricted phage 9 g, indicating natural restriction barriers exist in some strains. A BlastP search of GenBank sequences revealed five glutamine amidotransferase-QueC homologs in Enterobacteria and Pseudomonas phage, and distant homologs in other phage and bacterial genomes, suggesting that dG+ is not a rare modification. We also mapped phage 9 g DNA packaging (pac) site containing two 21-bp direct repeats and a major terminase cleavage site in the phage genome.


Assuntos
Colífagos/genética , DNA Viral/química , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Escherichia coli/genética , Guanosina/análogos & derivados , Escherichia coli/crescimento & desenvolvimento , Regulação Viral da Expressão Gênica , Guanosina/química , Guanosina/genética , Metilação , Metiltransferases/metabolismo
20.
Genome Biol ; 18(1): 122, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28655330

RESUMO

Open chromatin profiling integrates information across diverse regulatory elements to reveal the transcriptionally active genome. Tn5 transposase and DNase I sequencing-based methods prefer native or high cell numbers. Here, we describe NicE-seq (nicking enzyme assisted sequencing) for high-resolution open chromatin profiling on both native and formaldehyde-fixed cells. NicE-seq captures and reveals open chromatin sites (OCSs) and transcription factor occupancy at single nucleotide resolution, coincident with DNase hypersensitive and ATAC-seq sites at a low sequencing burden. OCSs correlate with RNA polymerase II occupancy and active chromatin marks, while displaying a contrasting pattern to CpG methylation. Decitabine-mediated hypomethylation of HCT116 displays higher numbers of OCSs.


Assuntos
Cromatina/genética , Metilação de DNA/genética , Genoma Humano/genética , Elementos Reguladores de Transcrição/genética , Ilhas de CpG/genética , Desoxirribonuclease I/genética , Células HCT116 , Humanos , RNA Polimerase II/genética , Transposases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...